-
Training an MT model without access to any translation resources at training time (known as unsupervised translation) was the necessary next step. Research we are presenting at EMNLP 2018 outlines our recent accomplishments with that task. Our new approach provides a dramatic improvement over previous state-of-the-art unsupervised approaches and is equivalent to supervised approaches trained with nearly 100,000 reference translations. To give some idea of the level of advancement, an improvement of 1 BLEU point (a common metric for judging the accuracy of MT) is considered a remarkable achievement in this field; our methods showed an improvement of more than 10 BLEU points. This is an important finding for MT in general and especially for the majority of the 6,500 languages in the world for which the pool of available translation training resources is either nonexistent or so small that it cannot be used with existing systems. For low-resource languages, there is now a way to learn to translate between, say, Urdu and English by having access only to text in English and completely unrelated text in Urdu – without having any of the respective translations.
(tags: unsupervised-learning ml machine-learning ai translation facebook)
-
scenes from London transit infrastructure. There’s a fantastic 1960s vibe off these
(tags: london tube public-transport prints art gail-brodholt via:mltshp)