
New Features in
SpamAssassin 3.2.0

For Large-Scale Receivers

Justin Mason

MAAWG Dublin, June 2007

© 2007 MailChannels Corporation

Intro

• One of SpamAssassin's development team

• Wanted SA 3.2.0 to be faster

• Wrote a few of these features, kept a close
eye on others

• Will do a slide or 3 on each feature

© 2007 MailChannels Corporation

Feature: “sa-compile”

• SpamAssassin rulesets are specified in
configuration files on the server

• compiled to perl bytecode at runtime

• SpamAssassin's "body" ruleset is the
slowest

»about 60-65% of the runtime

• would be great to speed this up

© 2007 MailChannels Corporation

How SpamAssassin body rules work

foreach line (lines in rendered message) {
if (line contains /pattern_1/) {

got_hit("RULE1"); last;
}

}
foreach line (lines in rendered message) {

if (line contains /pattern_2/) {
got_hit("RULE2"); last;

}
...

}

© 2007 MailChannels Corporation

This is surprisingly efficient!

• due to efficiency in perl's regular
expression implementation

• and due to the fact that emails are
very short in general

• especially when HTML is parsed
beforehand

© 2007 MailChannels Corporation

However, it can be improved

• in particular, matching those regular
expressions in parallel would help...

• Many commercial products based on
opensource SpamAssassin do this, in
various ways

• It'd be nice to see it in open-source

© 2007 MailChannels Corporation

re2c

• compiles set of (basic) regexps into C
code which implements a parallel-
matching DFA state machine

»compile to native code, with “cc -O2”

• Matt Sergeant contributed "re2xs",
which converts (basic) Perl regexps
into input for "re2c" and generates a
Perl XS module

© 2007 MailChannels Corporation

The plugin

• re2xs adapted into a new SA plugin and a
user interface script for administrators:

» Mail::SpamAssassin::Plugin::Rule2XSBody

» sa-compile

• run “sa-compile” after adding new rules or
updating an existing ruleset; it'll take a
minute to compile the regular expressions
into a parallel-matching DFA for you

© 2007 MailChannels Corporation

Not a total replacement

• re2c regexps quite different from Perl
regexps

» so we have to follow every potential match
with a "double-check" using the full perl
regexp

• Some regexps are just too complex, so we're
left with a small leftover legacy set

» (~ 40% of the default "body" ruleset)

© 2007 MailChannels Corporation

Real-world results

• 10% to 20% speedup on a mixed corpus of
real spam and non-spam mails

• Faster if you add additional SARE rulesets
(24% in my test)

• Runtime went from 51.2 seconds to 38.9
seconds

» (measured using SpamAssassin's "mass-
check" mass scan tool)

© 2007 MailChannels Corporation

How to use it

• Edit /etc/mail/spamassassin/v320.pre

• Remove the "#" from this "loadplugin" line:
➢ # Rule2XSBody - speedup by compilation of ruleset to native code

➢ # loadplugin Mail::SpamAssassin::Plugin::Rule2XSBody

• Run "sa-compile" as root

• Restart the "spamd" server, Amavisd-new,
etc.

© 2007 MailChannels Corporation

Feature: short-circuiting

• SpamAssassin used to run all rules before
giving a spam/nonspam diagnosis

• obviously, some spam is "super-spammy"

• can be marked after running only 10% of
ruleset

• ideally we should be able to "short-circuit"
the scan process if the mail is already
marked high enough to be spam

© 2007 MailChannels Corporation

Harder than it seems

• checking to see if we can "short-circuit" like
this can itself impose too much of a hit

» with 1000 rules, performing short-circuit
checks after each one is slow

• nonspam mails generally hit only 1 or 2 rules

» we will eventually have to use all rules
when scanning them, anyway

© 2007 MailChannels Corporation

Still harder than it seems

• if we allow s/c to mark a mail as nonspam,
then we open a hole that spammers can
exploit to get their mails marked as nonspam
if we're not careful

» spammers love these holes

• need to be careful about rule ordering: you
can't exit early if you may be able to swing
back in the opposite direction with a high-
scoring rule later

© 2007 MailChannels Corporation

The 3.2.0 approach

• allow the administrator to specify the rules
they want to allow to short-circuit the scan

• more intuitive, since the administrator gets to
decide which rules are trustworthy enough

• less "magic" happening out of sight behind
the scenes

© 2007 MailChannels Corporation

Rule priority

• rule order can be specified in configuration

• "cheap", fast, reliable rules can be set up to
run first, and short-circuit if hit (such as
spamtrap hits)

• followed by "less cheap" reliable rules (such
as DKIM whitelists)

• followed by all the rest

© 2007 MailChannels Corporation

Shortcircuiting example
local whitelists, or mails via trusted hosts
meta SC_HAM (USER_IN_WHITELIST||USER_IN_DEF_WHITELIST||ALL_TRUSTED)
priority SC_HAM -1000
shortcircuit SC_HAM ham
score SC_HAM -20

slower, network-based whitelisting
meta SC_NET_HAM (USER_IN_DKIM_WHITELIST||USER_IN_SPF_WHITELIST)
priority SC_NET_HAM -500
shortcircuit SC_NET_HAM ham
score SC_NET_HAM -20

run Spamhaus tests early, and shortcircuit if they fire
meta SC_SPAMHAUS (RCVD_IN_XBL||RCVD_IN_SBL||RCVD_IN_PBL)
priority SC_SPAMHAUS -400
shortcircuit SC_SPAMHAUS spam
score SC_SPAMHAUS 20

© 2007 MailChannels Corporation

Results

• On my (small, vanity-domain) server, it's
resulted in an average of 20% less time
spent scanning

• Mails that short-circuited as "spam"
completed scans in an average of 0.2
seconds; as "ham", in an average of 0.5s

• Details at http://wiki.apache.org/spamassassin/
ShortcircuitingRuleset

http://wiki.apache.org/spamassassin/

© 2007 MailChannels Corporation

Feature: “msa_networks”

• Dynablock rules cause false positives for
some ISPs with dynamic address pools

• Mails from dynamic users arrive from the
pool via a trusted Mail Submission Agent,
which authenticates them

• However SpamAssassin can't tell that the
MSA authed the user, so a dynablock rule
fires (incorrectly)

© 2007 MailChannels Corporation

We try to recognise MSA authentication

• some MTAs record this in a “Received”
header (RFC 3848, defining “Received: with
ESMTPSA” etc., especially useful)

• some don't record it at all in headers :(

• hence “msa_networks”: specify the IP
address (ranges) where your MSAs live

• SpamAssassin will assume that any
message via those is from a trusted host,
since your MSA authenticated the user

© 2007 MailChannels Corporation

Feature: backscatter ruleset

• “backscatter” = bounces, in response to spam
sent using a fake address at your domain

• you had nothing to do with it, but the remote
MTA still sends you:

» "user unknown" bounces

» "your mail was probably spam!" bounces

» "your mail had a virus!" bounces

» challenge/response challenges

• volume can be as high as spam itself :(

© 2007 MailChannels Corporation

Add a ruleset to detect it

• based on Tim Jackson's “bogus-virus-
warnings.cf” ruleset

• much extended, and made a core part of
SpamAssassin

• added whitelisting of “good” relays, so you
can rescue bounces of messages that really
were sent by your MTAs

© 2007 MailChannels Corporation

Feature: mod_perl module

• spamd implemented as a mod_perl Apache
module

• contributed as a Google Summer of Code
project by Radoslaw Zielinski

• Apache includes lots of well-tested,
optimized, scalable code to do all the TCP
heavy-lifting, so this is more efficient than
spamd

© 2007 MailChannels Corporation

mod_perl module, contd.

• this speed comes at a cost: simplified
configuration support and no setuid mode

• in the SpamAssassin 3.2.0 release tarball in
the “spamd-apache2” directory, if you're
interested

• a little bit beta! hasn't received massive real-
world deployment yet, so watch out ;)

© 2007 MailChannels Corporation

Feature: Amazon EC2 support

• The “Elastic Compute Cloud” is a virtual
server farm operated by Amazon

• incredibly easy to bring up and shut down
new virtual "servers" to match demand

• a great way in theory to deal with high load
caused by spam storms: start up some
servers at EC2, and offload your spam
filtering load to there until it dies down

© 2007 MailChannels Corporation

Amazon EC2 support, contd.

• EC2 is billed partly on bandwidth used, so
we need to reduce that

• added new features to the spamc/spamd
protocol to support this:

» "-z": compression

» "--headers": return just rewritten headers

» "--ssl": SSL encryption

• even without EC2, this is good for cross-
internet use of spamd, in general

© 2007 MailChannels Corporation

Feature: sa-update

• tighten up the rule-development life cycle by
automatically publishing new rules

» rules are added to our SVN repository for
testing

» automatically tested against several fresh
collections of mail

» if they pass, they're added to the
published set in the next day's updates

• (coming; still working on this, post-release)

© 2007 MailChannels Corporation

That's it!

• Thanks for listening!

• Slides will be blogged at
http://taint.org/tag/sa320

• Thanks also to MailChannels

• Questions?

